Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

نویسندگان

  • Ji-Min Woo
  • Ji-Won Kim
  • Ji-Won Song
  • Lars M. Blank
  • Jin-Byung Park
چکیده

The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli.

Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remo...

متن کامل

Antifungal Activity of Heterologous Expressed Chitinase 42 (Chit42) from Trichoderma atroviride PTCC5220

The cDNA from the mycoparasitic fungus Trichoderma atroviride PTCC5220 encoding a 42 kDa chitinase (Chit42) was isolated. The nucleotide sequence of the cDNA fragment as having a 1263 bp open reading frame that encodes a 421 amino acid polypeptide, and a high homology was found withother reported Chit42 belonging to the Trichoderma sp. The 22 amino acid N-terminal sequence is a putative s...

متن کامل

Bacterial Overexpression of the Human Interleukin-2 in Insoluble Form via the pET Trx Fusion System

Selection of a system for successful recombinant protein production is important. The aim of this study wasto produce high levels of human interleukin-2 (hIL-2) in soluble form. To this end, the pET32a vector inEscherichia coli BL21 (DE3) was used as an expression system, since it was previously used for the productionof mouse IL-2 in soluble form. The results indicated that c...

متن کامل

Significant Changes in the Activity of L-Glutamic Acid Decarboxylase of Mouse Hypothalamus After Peripheral Injection of Cholecystokinin-8 and Caerulein

The activity of one of the metabolizing enzymes of - aminobutyric acid, (GABA), was determined in mouse hypothalamus after peripheral injections of cholecystokinin-8 (CCK-8) and caerulein (CLN). The activity of this rate-limiting enzyme, L-glutamic acid decarboxylase, (GAD), did not change thirty minutes after peripheral injections of either CCK-8 or CLN in doses of 50g/kg body weight. Howeve...

متن کامل

Mechanistic platform knowledge of concomitant sugar uptake in Escherichia coli BL21(DE3) strains

When producing recombinant proteins, the use of Escherichia coli strain BL21(DE3) in combination with the T7-based pET-expression system is often the method of choice. In a recent study we introduced a mechanistic model describing the correlation of the specific glucose uptake rate (qs,glu) and the corresponding maximum specific lactose uptake rate (qs,lac,max) for a pET-based E. coli BL21(DE3)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016